YES 0.984
H-Termination proof of /home/matraf/haskell/eval_FullyBlown_Fast/empty.hs
H-Termination of the given Haskell-Program with start terms could successfully be proven:
↳ HASKELL
  ↳ BR
mainModule Main
|  | (((>) :: Float  ->  Float  ->  Bool) :: Float  ->  Float  ->  Bool) | 
module Main where
Replaced joker patterns by fresh variables and removed binding patterns.
↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
mainModule Main
|  | (((>) :: Float  ->  Float  ->  Bool) :: Float  ->  Float  ->  Bool) | 
module Main where
Cond Reductions:
The following Function with conditions
is transformed to
| undefined0 | True | = undefined | 
| undefined1 |  | = undefined0 False | 
↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ Narrow
mainModule Main
|  | ((>) :: Float  ->  Float  ->  Bool) | 
module Main where
Haskell To QDPs
↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ Narrow
            ↳ AND
              ↳ QDP
                ↳ QDPSizeChangeProof
              ↳ QDP
              ↳ QDP
Q DP problem:
The TRS P consists of the following rules:
new_primPlusNat(Succ(vx1400), Succ(vx40000)) → new_primPlusNat(vx1400, vx40000)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- new_primPlusNat(Succ(vx1400), Succ(vx40000)) → new_primPlusNat(vx1400, vx40000)
 The graph contains the following edges 1 > 1, 2 > 2
↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ Narrow
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ QDPSizeChangeProof
              ↳ QDP
Q DP problem:
The TRS P consists of the following rules:
new_primMulNat(Succ(vx3000), Succ(vx4000)) → new_primMulNat(vx3000, Succ(vx4000))
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- new_primMulNat(Succ(vx3000), Succ(vx4000)) → new_primMulNat(vx3000, Succ(vx4000))
 The graph contains the following edges 1 > 1, 2 >= 2
↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ Narrow
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPSizeChangeProof
Q DP problem:
The TRS P consists of the following rules:
new_esEs(Succ(vx1000), Succ(vx1600)) → new_esEs(vx1000, vx1600)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- new_esEs(Succ(vx1000), Succ(vx1600)) → new_esEs(vx1000, vx1600)
 The graph contains the following edges 1 > 1, 2 > 2